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Abstract

NASA has made definitive progress towards achieving
several bold U.S. goals in aeronautics related to air breathing
engines.  The advanced technologies developed towards
these goals span applications from general aviation to large
subsonic and supersonic aircraft.   The proof of successful
technology development is demonstrated through successful
technology transfer to U.S. industry and projected fleet
impact.  Specific examples of progress are discussed that
quantifies the achievement towards these goals.  In addition,
a more detailed vision for NASA aeronautics is defined and
key strategic issues are explored. These invite international
and national debate and involvement especially in reduced
environmental impact for subsonic and supersonic aircraft,
dramatic new capabilities in general aviation engines, and
reduced development cycle time and costs.

Introduction

At the last ISOABE conference in 1997, Reference 1
discussed the new national aeronautics goals recently
developed by NASA and the significant role propulsion
systems play in achieving these goals.  The goals are
reiterated in Figure 1 for convenience.  This paper discusses
the recent progress made towards these goals in propulsions
systems.  The paper also describes a long-term vision for
ensuring the environmental compatibility of aviation to
ensure the growth in aviation, an integrated small air
transportation system to bring door-to-door automotive
convenience to commercial air travel, and an intelligent
synthesis environment for a new culture in the design and
development of large complex engineering systems.

For each of these goals, NASA has recently completed
national roadmaps showing existing and future programs
required to meet these goals including those at other agencies
who are essential partners to progress such as the FAA and
DoD.  The roadmap for emissions is shown as an example in
Figure 2.  The national aeronautics goals are expressed in
terms of ultimate impact while NASA’s role carries
technologies in aeronautics only to Technology Readiness
Levels (TRL) of 6 as defined in Figure 3.  Thus, NASA must
partner with other government agencies, industry, and
academia to effect the final result.

The need for collaboration extends well beyond the
borders of the United States. As will be discussed, the
challenges to aviation of reducing global climate impact to

ensure the continued growth of aviation will require increasing
levels of international cooperation and collaboration.
Accomplishing collaborations internationally will be made
more difficult by the increasing competitive advantage of
propulsion systems with reduced noise and emissions.  A
vision for 10, 25 and 30-40 year goals in emissions reduction
is discussed which could stimulate international discussions
leading to a harmonization of goals and eventually closer
working relationships.

Several major programmatic changes have taken place
over the past six months.  The Advanced Subsonic Technology
(AST)  and High Speed Research Programs (HSR) will end this
fiscal year.  A new propulsion program, Ultra Efficient Engine
Technology Program, is proposed to start in fiscal year 2000.
The impact of these programmatic changes on progress toward
the national aeronautics goals will be discussed.

Progress

Overview
This section discusses the progress made in the past few

years towards achieving the eight aeronautics goals.  Safety
has been an area of research for over forty years at NASA
Glenn Research Center principally focused on icing.  Accurate
computer models have been developed to predict icing shapes
on wings, tail surfaces, and engine inlets, the impact on
performance of ice, and validating these predictions in the
world’s largest icing research tunnel and in research aircraft
flying in actual icing conditions. Airspace capacity
improvements are discussed only in the context of reducing
engine noise with resulting reductions in noise abatement
routes in the short term and with the potential of tripling
capacity long-term by the elimination of noise curfews.
Significant progress has also been made in reducing emissions
from large subsonic and regional jet aircraft engines by 50%
compared to 1996 ICAO Standards and in demonstrating
emissions levels for a High Speed Civil Transport (HSCT)
engine low enough to avoid impact on ozone in the atmosphere.
Noise levels of subsonic engines have been reduced by 3 dB
in the Advanced Subsonic Technology Program from 1997
levels and the aggressive noise goals of the HSCT engine was
demonstrated as achievable in sub-scale fan and nozzle tests.

Improvements in the affordability of aircraft engines
have been accomplished principally in reduced fuel burn and
lighter weight engines.  The feasibility of reduced travel time
to Asia using a HSCT has been clearly demonstrated. The
High Speed Research Program has met all of its aggressive
engine goals before the program concludes this fiscal year.
The General Aviation Propulsion (GAP) Program has

PROGRESS TOWARD NATIONAL AERONAUTICS GOALS

Carol J. Russo* and Arun K. Sehra*
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

*Member, AIAA.



2NASA/TM—1999-209193

successfully run both the low cost turbine and intermittent
combustion engines needed to revitalize this industry.  Finally,
significant progress has been made in reducing the time to
design and develop engines through advanced computer
models of compressors and progress in developing the
Numerical Propulsion Simulation System, a numerical test
cell for engines that has demonstrated dramatic reductions in
the time and cost to develop engine components.

Aviation Safety
To significantly improve the safety of aeropropulsion

systems, major advances were made in the areas of icing,
development of crack resistant materials, and crack detection.
An overview of some of the high potential technologies is
provided in this section.

Aerodynamic Measurement of Iced Surfaces—
Measurement of aerodynamic characteristics of iced surface
in a wind tunnel is a cumbersome process. It involves making
a mold and then a casting of the ice shape, followed by
instrumenting the casting, and testing at condition. This
process can take months.  During 1998, the world’s first
application of pressure sensitive paint (PSP) on ice accretions
was successfully demonstrated.  The paint adheres to glaze,
rime and mixed ice and cures in three minutes at -10 ºF.  It
retains detailed surface features and responds to pressure
changes. With PSP, the process aerodynamic measurement
of iced surface can be reduced to minutes.  Data obtained
from these tests is used to improve the Glenn Research Center
(GRC) developed Ice Accretion code, LEWICE, ultimately
to improve the safety of air travel.

Crack Resistant Materials for Compressor and Turbine
Disks—An important objective of the Crack Resistant
Materials research, which is currently being conducted at
GRC, is to enhance the durability and design lives of high-
pressure compressor and turbine disks. The overall goal of
this research is to develop a reliable life prediction model.

Recent research effort at GRC on production quality
powder metallurgy UDIMET 720 disk has established that
oxide inclusions and large grain porosity (Figure 4) limit the
fatigue life of disks. In addition it has been demonstrated that
there is a close correspondence between the cyclic mean
stress and the type of defect at which a fatigue crack will
nucleate.  Thus a high mean cyclic stress is likely to initiate
failures at oxide inclusions. The result of this NASA research
will be coordinated with the FAA, the engine companies, and
Southwest Research Institute, San Antonio, Texas.

 Propulsion System Health Management—A major effort
is underway at GRC to develop and demonstrate technologies
that can predict, detect, and prevent safety-significant
propulsion malfunctions. Particular emphasis is being placed
in the areas of advanced diagnostic/prognostic instrumentation
for in-situ engine operation, advanced health monitoring
algorithms for safety significant fault prediction/detection,
and fault accommodating control logic to prevent or mitigate
the effects of propulsion malfunctions.

Recent advances in this area include conceptual
development of integrated diagnostics and controls for
engine surge prevention and mitigation, and advanced
instrumentation for detention of cracks in turbomachinery.

Integrated Diagnostics and Controls— Figure 5 shows
the Integrated Diagnostics and Controls for Surge Prevention
and Mitigation concept which aims to build upon previous
Performance Seeking Control (PSC) efforts. It consists of an
on-board model-based tracking filter which monitors engine
instrumentation to track and quantify the effects of component
degradations on fan and compressor stability margin. Control
reconfiguration logic will utilize this information to update
control schedules to insure adequate stability margin is
maintained during transient operation to prevent engine
surge events. The engine health information collected on-
board can also be provided to ground-based diagnostic systems
to support maintenance scheduling. The safety benefits of
this technology are a reduction in rejected takeoff events due
to engine surge, and a reduction of in-flight engine shutdowns.
Secondary benefits include real-time tracking of engine
component health to support on-condition maintenance, and
optimized engine performance and emissions in the presence
of degradation. A similar concept for improving engine
stability was successfully applied to Pratt & Whitney, F100
engine. It is described in the section titled "Reduced Skin
Friction Drag Through Micro-Blowing" of this paper.

In-Situ Crack Detection—The goal of the Advanced
Turbomachinery Crack Detection Instrumentation effort is to
develop and demonstrated instrumentation for in-situ crack
detection as well as life and usage monitoring of critical
engine components.

Application of thin film strain gages is an example of the
recent advancements in in-situ crack detection technologies.
This technology, shown in Figure 6, is minimally intrusive,
and has been demonstrated to be robust and accurate in high
temperature environments. Efforts are currently underway to
develop two new technologies, smart coatings and a unique
ultrasonic technique. The latter technology can detect
significantly smaller cracks than previously considered
possible. The safety benefits of this advanced instrumentation
will be to reduce un-contained engine failures, and reduce in-
flight engine shutdown events. Secondary benefits of this
technology include a reduction in engine inspection times,
the support of component life and usage monitoring to extend
component Time Before Overhaul (TBO).

Emissions
Emission reduction research has been focused on NOx

for both subsonic and supersonic engines.  NOx levels have
been demonstrated at 50% of 1996 ICAO Standards for large
subsonic aircraft engines and 50% for regional jet engines.
Figure 7 shows the AST combustor sector test results meeting
the AST Program goal for large engine combustors.
Figure 8 shows the progress made compared to current and
proposed NOx levels regulated by International Civil Aviation
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Organization (ICAO).  These NOx reduction levels have
been demonstrated to Technology Readiness Levels of 6 as
defined in Figure 3.  Some engines recently entering service
have incorporated reduced emission technologies develop in
the NASA AST Program.

This early introduction of the AST reduced NOx
combustor technology enabled the United States to
successfully negotiate a viable lower level of reduced
emissions in recent ICAO meetings leading to the CAEP 4
agreements shown in Figure 8.  The CAEP 4 agreements will
further reduce NOx levels of the aviation fleet which is very
important given the projected growth of aviation of 5% per
year leading to a doubling of the fleet size by 2020.

In supersonic civil engines, emissions index reductions
of a factor of 10 below State of the Art for supersonic engines
have been demonstrated in realistic engine combustor
geometries for an HSCT.   A Lean, Pre-mixed, Pre-vaporized
(LPP) combustor concept was downselected as the best
solution to EI (Emissions Index) levels at or below 5 winning
over the Rich-burn, Quick-quench, Lean-burn (RQL)
combustor concept as shown in Figure 9.  Additional
information on the progress made in the HSR Program can be
found in Reference 2.

Noise
A 3 dB reduction in subsonic engine noise has been

demonstrated in the AST Program through the development
of optimal swept fan blade and leaned stator designs.
Numerical predictions were accurately made using advanced
fan noise models and verified in the 9x15 wind tunnel at
NASA GRC in a 22 inch rotating fan as shown in Figure 10.
This successfully demonstrated a top level milestone in AST.

Further noise reduction work is continuing through
fiscal year 2001 to meet the total engine reduction goal of 6
dB.  When combined with aircraft noise reductions and
reduced community noise impact through improved airspace
operations, a total reduction of 10 dB will have been
demonstrated from 1997 levels by 2007.  These dB reductions
are for single aircraft events.  As these quieter aircraft enter
into service (possibly 5-6 years after demonstration at TRL of
6 if market conditions warrant), the community noise impact
will be reduced by 5-7 dB DNL (Day Night Level) by 2022
and then will rise again due to projected increases in aircraft
traffic.  The project growth in air travel necessitates continued
development of reduced noise technologies as discussed
further in the section titled "Visions for the Future" of this
paper. This section also discusses the contributions to
improvements in airspace capacity due to long-term noise
reductions of 20 dB from 1997 levels.

In the HSCT, noise levels were demonstrated in sub-
scale nozzle and fan tests at 5 dB below Stage 3 which is 25
dB below that of the Concorde.  Figure 11 shows the nozzle
results indicating the feasibility of meeting the HSR noise
goals which are particularly challenging for the very large
size of the nozzle coupled with a light weight, long life nozzle

design.  With the recent announcement by Boeing that a
HSCT potential launch decision would be delayed from 2007
to around 2025, it became clear that the aggressive noise
reduction technologies demonstrated in the HSR program
would not be sufficient to meet projected noise levels in 2025.
New engine designs and noise reduction technologies would
be required.  Reference 2 gives additional information.

General Aviation Propulsion
The General Aviation Propulsion (GAP) Program goals

were to demonstrate revolutionary advancements in turbine
and intermittent engines for the four to six seat aircraft class
to enable a revitalization of this industry.  Figure 12 shows the
magnitude of the performance and cost improvement goals
for the Williams International FJX-2 turbine in both turbine
and turboprop configurations and the Teledyne Continental
intermittent combustion engine. These advancements are
achieved through simplified designs with greatly reduced
parts, advanced casting and manufacturing technologies, and
advanced aerodynamic designs.  Both engines have been
assembled and successfully run.  Full performance data is not
yet available but initial results are promising. Both engines
will be flown at Oshkosh in the year 2000.

GA aircraft manufacturers are partners in the GAP
program with the engine manufacturers and will be evaluating
the performance improvements for aircraft with these engines.
A turboprop version of the FJX-2 engine is also being
developed under GAP to increase the market for these engines
and help to reduce cost with increased volume.  Derivative
applications in marine, ground power, and rotorcraft are
expected to further increase the market for these engines
further reducing the price.

Affordable Air Travel
Several propulsion system related technology initiatives

are underway to make the air travel more affordable. Primary
focus has been on improving the performance (fuel burn and
engine stability) and reducing the design and development
cost. Development of  high fidelity design and analysis tools,
which directly help to improve engine efficiency and reduce
design and development cost, is presented in the section titled
"Design Tools and Experimental Aircraft" of this paper.
Other technology areas that can have significant positive
impact on performance and cost include smart control systems
and advanced flow management concepts. Recent
accomplishments in the areas of advanced concepts are
described in the following paragraphs.

Smart Engine Controls—NASA recently concluded
flight demonstrations of an advanced high-stability engine-
control (HISTEC) system that is expected to significantly
increase future propulsion system performance in both military
and commercial aircraft turbine engines. The system, called
Distortion Tolerant Control, incorporates an aircraft-mounted,
high-speed processor that senses changes in airflow at the
front of the engine and allows the system to automatically
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command trim changes to the engine to accommodate
changing distortion conditions (Figure 13). This allows the
engine to operate with more stability under adverse or turbulent
airflow conditions. The HISTEC system was successfully
flight tested at the Dryden Flight Research Center on modified
F15 jet. Project pilots flew through a variety of maneuvers
designed to create unstable or distorted airflow conditions in
the engine air inlets, including flight angles up to 25 degrees,
full rudder sideslips, wind-up turns, split-S descents, and
simulated flight maneuvers.

The primary benefit of Distortion Tolerant Control is
that it can allow the built-in stall margin to be reduced, which
can then be traded for increased performance, decreased
weight, or both. The result will be higher performing and
more fuel efficient aircraft producing less emissions.

Reduced Skin Friction Drag Through Micro-Blowing—
The Micro-Blowing Technique (MBT), an innovative method
for reducing skin-friction, was invented in 1993 by researchers
at the Glenn Research Center. MBT is a unique concept in
which an extremely small amount of air is blown vertically
through a specially designed porous plate with micro holes.
This reduces the surface roughness and viscous shear drag,
thereby reducing skin friction. In September 1997, a joint
program of GRC, United Technologies Research Center,
Northrop Grumman Corporation, and Pratt & Whitney was
completed. In this program, a 30-inch engine nacelle with an
MBT skin was tested in United Technologies' wind tunnel
(Figure 14). The results indicated that 50 to 70% reduction in
skin friction are possible over portions of nacelle, with the
addition of only small amounts of blowing air. This technique
when applied to other aircraft surfaces can result in substantial
reduction in drag, which in turn will result in reduced fuel burnt.

Affordable, Light Weight Materials—Glenn Research
Center has recently succeeded in developing a low cost, light
weight material under the High Temperature Engine Materials
and Structures Project (HITEMP) program for application in
engine cold section. AMB-21 was used to fabricate a surge
duct for AlliedSignal 331-500 Auxiliary Power Unit, which
is used on Boeing 777.  When compared to the currently used
titanium duct, this duct costs 25% less to fabricate, is 30%
lighter in weight, and has six times the durability (Figure 15).
Reduced APU weight directly helps in reducing the fuel
burnt. Use of this material for fabrication of other engine cold
section components, such as the compressor case, can result
in significant saving in manufacturing cost, fuel burnt (due to
reduced weight) and maintenance cost.

Design Tools and Experimental Aircraft
NASA GRC is leading a Government-Industry

cooperative effort under its Numerical Propulsion System
Simulation (NPSS) program directed at developing a system
that can perform aero-thermo-structural numerical simulation
of a complete air-breathing gas turbine engine. The goal is to
reduce the engine design and development time by a factor of
two and also help to improve engine performance and
durability. Major advances have been made beyond the

axisymmetric full engine simulation shown in Figure 16.
Some of the recent accomplishments in the area of advanced
design/ analysis tools and flow measurement techniques for
validation of these tools are discussed in more detail.

Engine Design/ Analysis Tools
Modeling of aerodynamic interactions among

turbomachinery blade rows—The APNASA (Average
Passage NASA) code, which simulates viscous, unsteady
interactions effects among blade rows, was used to perform
simulation of GE90 compressor and turbine on a cost-effective
work station cluster. The results obtained from this simulation
are being compared to the experimental test data to validate
the code. Several engine companies are currently using
APNASA to design rotating components for their next
generation engines.

High Speed Computing—A 200:1 reduction in the time
to perform a 3-D reacting flow simulation of a gas turbine
combustor on a cluster of SGI Origin 2000 processors was
demonstrated. This now enables large scale combustor
problems (in excess of 1 M grid points) to be solved in less
than 15 hours.

Common Thermodynamic Analysis—The first version
of National Cycle Program (NCP), which can help to
significantly increase productivity in the preliminary design
of propulsion systems and its integration with airframes, was
released to aeropropulsion industry.  The advanced software
design and object-oriented structure provide a framework to
extend modeling capabilities to include high fidelity,
multidisciplinary system analysis in a collaborative
environment.

Unsteady Coupled Aero-Structure Simulation— NASA
GRC-Mississippi State University developed TURBO-AE
code, which couples a three-dimensional unsteady
aerodynamic Euler/Navier-Stokes model with a finite-element
structural dynamics model, has been validated in collaboration
with four engine companies. The validation was performed
using standard configuration data, NASA data, and engine
company data. In addition, code-to-code comparisons were
performed using existing lower fidelity codes from NASA
and engine companies. As an example of the validation work,
one engine company used TURBO-AE to accurately model
observed fan rig flutter including the correct operating
condition, flutter mode, and inter blade phase angle. A typical
TURBO-AE prediction is shown in Figure 17.

Advanced Flow Measurement Techniques—In
conjunction with advances in simulation tools, major advances
have also been made in optical measurements of flow field.
These measurements not only provide physical insight into
fundamental physics but are also tied directly to code
development, bringing us ever closer to virtual designs.  Specific
examples of accomplishments in the last year are described.

Particle imaging velocimetry (PIV)—The PIV, which is
a pulsed laser sheet, was used to see inside complex machinery
rotating at high speeds, capturing the world’s first
instantaneous planar velocity maps in a high speed (21,000
RPM) centrifugal compressor (Figure 18). These
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measurements captured transient surge events, showing details
of both supersonic and reversing flows within the flow
passage, yielding information useful for designing an active
stall control system. Phase-resolved steady-state date from
PIV was also used to add a splitter module to APNASA code.

Noise Measurement—Rayleigh scattering technique was
recently used to measure the power spectral density in a Mach
1.37 jet, showing the evolution of noise sources along center
line.  This data is being evaluated to understand fundamental
physics of noise generation and to validate computational
aeroacoustics codes, leading to quieter aircraft.

Visions for the Future

NASA has developed dramatic visions for achieving the
national goals. Three areas are discussed in this section:
environmental compatibility, general aviation, and design
and development environment.  Not discussed but of vital
importance is a vision for high speed civil aviation. With the
termination of the HSR Program, it is important to assess the
nation’s needs in high speed civil aviation technologies
particularly in propulsion since it is a long lead enabling
system for any supersonic aircraft. A cohesive vision is
needed for incorporating technologies needed for civil aircraft
from bizjets to a HSCT, and for developing technology
synergies with high speed military aircraft and air breathing
access to space. This is a multi-agency effort that is essential
to ensure the future competitiveness of the U.S. industry in
both aeronautics and space.

Environmental Vision
The high level vision for aviation has been set by the

White House Policy as documented in Reference 3 (NSTC
August 1995 Goals for a National Partnership in Aeronautics
Research and Technology).  In addition to maintaining the
superiority of US aircraft and engines and improving the
safety, efficiency and cost effectiveness of the global air
transportation system, the long-term environmental
compatibility of the aviation system must be ensured.  In
particular, this reference states, “Past research investments in
technologies to reduce engine noise and emissions are paying
dividends today.   But more needs to be done.  Environmental
issues are likely to impose the fundamental limitation on air
transportation growth in the 21st century.”

In addition, the National Research Council states in
Reference 4: “The public will continue to demand reduction
in environmental damage and reductions of acoustic noise
over urban areas.  This will require the United States to
collaborate with other nations to develop technology that will
reduce or eliminate harmful aircraft engine emissions and
technology that will enable quieter engines and operations,
including revolutionary means to mitigate sonic boom effects
over populated areas.”

The priority of environmental compatibility is also an
increasingly important competitive advantage internationally.
The European Commission has highlighted engine emissions

and noise reductions as key technology areas for funding in
aeronautics research. Thus, environmental compatibility is
recognized by many policy making and research organizations
as a major barrier to the projected growth of aviation and the
economic and physical health of nations and a principal area
for research. The soon to be published United Nations Special
Report on Aviation and the Global Atmosphere (Reference
5) is testimony to the importance of reducing emissions from
aircraft and will be the definitive document for many
policy-makers.

NASA has held a series of three national workshops over
the past year involving major research, policy making,
regulation setting, and stakeholder and community groups to
develop a national consensus on the highest priority
environmental compatibility goals and proposed technical
approaches.  The results of these workshops are available on
the Environmental Compatibility Assessment (ECoA) web
page: http://www.hq.nasa.gov/office/aero/oastthp/programs/
encompat/encompat.htm.

Emissions—For emissions, three improvement areas
were highlighted: global warming reversal, improved local
air quality, and ozone depletion recovery.  The highest
priority emittants identified were CO2 and NOx and the
quantified metrics for these emittants are given in Figure 19.

The CO2 metrics were driven principally by two factors:
the ten and twenty five year metrics were what was judged as
the best achievable by improvements to gas turbine based
propulsion systems. The thirty to forty year goals were driven
by the Kyoto Protocol.  Figure 20 shows that aviation cannot
fully meet the Kyoto Protocol requirements of 5% below
1990 levels by 2010. Also shown is the reduction in CO2
emitted by aircraft if a zero emissions aircraft were introduced
at various time frames. If zero emissions aircraft were
developed and introduced beginning in 2027, the CO2 emitted
by aviation by 2045 would achieve reductions consistent
with the Kyoto Protocol.

The long-term CO2 metric spawned the concept of a
zero emissions aircraft that also set the long-term NOx
metrics.  A very preliminary study was made at NASA of
various zero emissions aircraft concepts.  Liquid hydrogen
powered aircraft are bigger but lighter than other concepts
and present operational, airport infrastructure, and engineering
challenges including storage of hydrogen in the fuselage.  In
addition, current methods of production of liquid hydrogen
are very pollutive and do not represent a good option for
overall CO2 reductions.  Liquid methane aircraft fall between
kerosene fueled and hydrogen fueled aircraft offering modest
reductions in CO2 and NOx.  Nuclear powered aircraft show
the potential for greatly reduced CO2 emissions with NOx
reduction levels mixed and dependent on the weight of the
shielding required.  Safety and public acceptance issues
would probably render the nuclear powered aircraft option
undesirable.

The best concept appeared to be a fuel cell powered
aircraft offering true zero emissions depending on the source
of hydrogen.  The fuel cell concept used for this preliminary
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study is shown in Figure 21.  The fuel cell is used to generate
power for electric motors that drive fans and propellers using
hydrogen fuel and assumes Proton Exchange Membrane
(PEM) technology being spearheaded by the automotive
industry for use in 5-10 years.  The weight is projected to be
about 10% lower than current State of the Art (SOA) gas
turbine based systems.  Some funding is planned in the
NASA Propulsion Systems Base R&T Program lead by
NASA GRC starting in fiscal year 2000 to further explore
zero emissions aircraft propulsions system concepts.

The near-term NOx metrics were set by the NASA Three
Pillar Goals as shown in Figure 19.  A new program called the
Ultra Efficient Engine Technology (UEET) Program is
proposed to start in fiscal year 2000 which will demonstrate
the 67% NOx reduction levels in realistic engine combustors
but will fall short of demonstration in a fully integrated
engine system.  The UEET Program will also demonstrate
fuel burn and CO2 reduction levels of 8-15% at the component
level.  Again, a TRL demonstration in a fully integrated
engine will not be undertaken in this program.  Figure 22
shows the currently major investment areas and proposed
metrics for UEET Program.

These metrics follow from the overall goals of this
program.  The UEET Program has three high level goals: (1)
increased performance to enable and enhance a wide range of
revolutionary aircraft for small to large and over a wide range
of flight speeds, (2) address local air quality concerns and
potential ozone depletion by developing technology for NOx
emissions reduction at take-off and landing conditions, and
also technology to enable aircraft to not impact the ozone
layer during cruise operation, and (3) address long term
aviation growth potential without impact on climate by
providing technology for dramatic increases in efficiency to
enable reductions in CO2 as well as all of the other emissions.
The UEET Program is currently being planned in greater
depth in collaboration with U.S. industry and academia.

It is important to note that noise technology is not
currently included in the UEET Program.

Noise/Capacity—Noise constraints on commercial air
travel have escalated as shown in Figure 23.  It is estimated
that only 2 commercial service airports in the US have no
noise restrictions.  As with emissions, reduced noise engines
are a rapidly increasing competitive advantage as well as an
increasing cost to airline operations both in landing fees,
reduced landing slots, and additional fuel burn during noise
abatement routes.  In addition, increasing impact on
community noise will be a serious barrier to the growth of
aviation even with the noise reductions gained in the AST
Program discussed earlier.  Figure 24 shows how the reduction
in single aircraft noise is offset with time by the growth in air
traffic which increases the noise impact at the airport boundary
as measured by the Day Night Level (DNL).

This figure also shows the far term vision for noise
reduction embraced by the ECoA workshops denoted as
“Pillar 3” which is the 25 year goal.  Meeting this goal means
shrinking the 65 dB DNL contour to fall within the airport

boundary thus reducing the community impact to a level that
will not seriously impede the growth of aviation.  Such a
reduction would have profound effects on community noise
and airspace capacity.

It is estimated that the resulting elimination of noise
abatement routes would also save 2-4 minutes per flight leg
saving the airlines billions of dollars per year.  In comparison,
the flight time savings goal of the NASA Aviation Capacity
Program is 6 minutes per flight leg.  There is the potential for
the elimination of noise curfews which could increase the
operating hours of the busiest airports with the potential of
tripling airspace capacity through expanded hours and the
use of existing alternate runways currently unusable for large
commercial aircraft due to noise restrictions.

This level of noise reduction is another 10 dB below the
level demonstrated in the AST Program and will require
significant further reductions in engine, airframe, and
operations noise levels.  In the engine these reductions will be
accomplished through further reductions in fan and jet noise,
light weight installable ultra high by-pass ratio engines, low
turbulence flow management, distributed exhaust streams,
among other technologies.

The AST Program goal of 10 dB reduction in single
aircraft noise will be demonstrated through 6 dB engine noise
reduction, 3 dB airframe noise reduction, and 1 dB noise
reduction through improved airspace operations.  The AST
Program will be terminated at the end of fiscal year 1999 but
the noise work will be continued in the Base research programs.
The AST noise reduction goal of 10 dB will be demonstrated
by fiscal year 2001 although at a lower technology readiness
level than 6 as previously planned.

Future Propulsion Systems for General Aviation
NASA is developing a new vision for the future of

general aviation to address the barrier to the growth of
aviation due to constrained airport capacity and mobility.
This vision is called the Small Air Transportation System
(SATS) and is shown pictorially in Figure 25.  The approach
is to achieve improvements in capacity and mobility by an
integrated ground and air transportation system utilizing the
thousands of small airports nationally currently underutilized
and harnessing the advancements in satellite communications,
global positioning, and weather information in the cockpit to
enable dramatic improvements in mobility door to door.

The future of General Aviation is critically coupled with
the future propulsion systems; that is, the propulsion systems
will enable the next generation aircraft to be developed and
deployed. The vision of General Aviation in the future is for
an affordable, safe and efficient transportation system that
would be utilized much as we currently use ground
transportation.  The system would be used by many more
people and the take-off/landing locations would be numerous
and close to homes and workplaces.  Vertical-takeoff and
landing (VTOL) aircraft shown in Figure 26, would play a
prominent role in this personal transportation system.
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In establishing the baseline General Aviation propulsion
systems in use today, we have intermittent combustion (piston)
engines for general use aircraft and turbine engines for very
expensive business use aircraft.  The IC engines are typically
spark-ignition, 4-cycle, air-cooled engines.  They use low-lead
aviation gasoline, have at least two pilot control inputs, require
continuous monitoring of several engine status gauges, and are
expensive.  The turbine engines are typically very expensive.

In reaching the vision for General Aviation, enabling
aircraft propulsion systems will have to address several
factors, including: cost, safety, ease of use, reliability, and
environmental compliance.

The propulsion system such a vehicle could be either an
IC or turbine based engine.  Low cost will be achieved
through advanced design and development processes, such
as concurrent engineering, analytical development methods,
rapid prototyping; innovative manufacturing processes; and
low parts count.  Even greater cost reductions will be possible
with high volume production, driven by multiple applications,
other than aviation, for the engines.  Performance and
durability will be improved through the use of new lightweight
materials such as metal matrix composites, polymer matrix
composites, and ceramics.  Safety and ease of use would be
enhanced through the use of “smart” systems using computers
and artificial intelligence to both control the propulsion
system and monitor its health and performance.
Environmental compliance will be assured through the use of
advanced combustion system and acoustical treatments.

For propulsion engines concepts beyond current engine
types, radically different propulsion can be envisioned that
use alternative energy sources such as an electric propulsion
system with hydrogen fuel cells.  The technologies to enable
these types of engines, such as superconducting material
motors and hydrogen fuel cells, are still in the research stage
and will require several years to reach a readiness level for
commercial implementation.

Intelligent Synthesis Environment
One of the goals of NASA’s Next Generation Design

Cycle is to reduce the design cycle for new commercial
aircraft and engines by 50% within 10 years and 75% within
25 years, while increasing the design confidence. Reaching
this goal will dramatically affect the cost of developing new
propulsion systems that are fully integrated with aircraft.
More recently, NASA has extended this vision to the entire
“life cycle cost” of the product.

To meet this challenge, NASA has developed a concept
referred to as the Intelligent Synthesis Environment (ISE).
The ISE will represent a radical cultural change in the way
that missions and engineering systems are currently developed.
ISE will combine leading-edge technologies in computer
science, computational intelligence, physics-based modeling,
and other areas, to enable an engineering system to be
modeled from “cradle-to-grave” in a virtual-reality
environment.  The system’s total life-cycle will be simulated,
starting with conceptual design, through other stages such as
preliminary design, detailed design, manufacturing, assembly,

mission performance, maintenance, repair and disposal.  The
ISE will link geographically dispersed mission synthesis
team members, such as scientists, engineering design teams,
technicians, manufacturers, suppliers, and consultants.
Formed into a “virtual team,” ISE will provide the intelligent
simulation tools these individuals need to participate
collectively in the synthesis of the missions within a high-
performance team environment, and to participate in the
creation and simulated operation of the aerospace systems
that support the mission objectives. Reference 6 discusses the
application of ISE to engine systems.

Summary

NASA has made significant progress towards many of
the eight national aeronautics goals developed in 1998.
Improvements in propulsion systems that are crucial to
progress in seven of these eight goals in the areas of safety,
emissions, noise, affordability, design cycle time and cost,
general aviation, and high speed travel to Asia have all been
demonstrated.  Three of these goals namely noise,
affordability, and high speed travel to Asia are currently at
“parade rest” due to funding constraints.

A long-term vision has been discussed at a high level for
environmental compatibility, design systems, and general
aviation.  Ensuring the continued environmental compatibility
of civil aircraft is an international imperative for both the
global and economic health of the world’s nations and is a
major barrier to the growth of aviation.  Within NASA this
area presents the greatest funding challenges in aeronautics.
International cooperation sensitive to competition issues
must dramatically increase if the global environment
challenges to aviation are to be met in a viable timeframe.
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• Reduce the aircraft accident rate  by a factor of five
within 10 years, and by a factor of 10 within 20 years

• Reduce emissions of future aircraft by a factor of three
within 10 years, and by a factor of five within 20 years

• Reduce the perceived noise levels of future aircraft
by a factor of two from today’s subsonic aircraft
within 10 years, and by a factor of four within 20 years

• While maintaining safety, triple the aviation system
throughput, in all weather conditions, within 10 years

• Reduce the cost travel by 25% within 10 years, and
by 50% within 20 years

• Reduce the travel time to the Far East and Europe by
50 percent within 20 years, and do so at today’s 
subsonic ticket prices

• Invigorate the general aviation industry, delivering
10,000 aircraft annually within 10 years, and 20,000
aircraft annually within 20 years

• Provide next-generation design tools and experimental
aircraft to increase design confidence, and cut the
development cycle time for aircraft in half

Seamless integration
of air travel into the
fabric of society:
easily accessible,
easily utilized, safe,
affordable travel
with minimal
environmental impact.
Customer demands
will drive air travel
systems, service,
and products

Research to
revolutionize air travel:
environmentally
friendly transoceanic
supersonic flights;
technology to
dramatically improve
small aircraft designs,
engine, and overall
affordability

I
Global Civil 

Aviation

II
Revolutionary 

Technology 
Leaps

Figure 1.—NASA national aeronautics goals.

Figure 2.—Goal 2: Reduce emissions of future aircraft roadmap.
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Level 9 Actual system “flight proven” on operational flight

Level 8 Actual system completed and “flight qualified” through
test and demonstration

Level 7 System prototype demonstrated in flight environment

Level 6 System/subsystem model or prototype
demonstrated/validated in a relevant environment

Level 5 Component and/or breadboard verification in a relevant
environment

Level 4 Component and/or breadboard test in a laboratory
environment

Level 3 Analytical and experimental critical function, or
characteristics proof-of-concept

Level 2 Technology concept and/or application formulated

Level 1 Basic principles observed and reported

System Test and Operations

System/subsystem Development

Technology Demonstration

Technology Development

Research to Prove Feasibility

Basic Technology Research

Industry
Role

Government
Role

Technology Readiness Level

Figure 3.—Technology Readiness Levels definition.

Oxide Inclusions

Large Grains Pores

100µm 

95 µm 50 µ

m

 

Figure 4.—Defects limiting the fatigue life of a PM disk superalloy identified.
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Adaptive Engine
 Control

Ground
Level

Removable Media, Electronic
Data Port, or Telemetry

Engine 
Instrumentation
• Pressures
• Fuel flow
• Temperatures
• Rotor Speeds

Actuator 
Commands
• Fuel Flow
• Variable Geometry
• Bleeds

Ground-Based Diagnostics
• Component Trend &

Degradation Monitoring
• Component Life Estimation
• Maintenance Planning

On-Board
Tracking Filter

• Efficiencies
• Flow capacities
• Stability margin

Updated Control Schedules to
Maintain Adequate Stability Margin

During Transient Operation

On Board

Reconfiguration
Logic

Component
Performance

Estimates

Figure 5.—Integrated Diagnostics and Control concept for surge free engine operation.
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Figure 7.—50 percent NOx reduction low emission sector combustor demonstrated. 

Sector Combustor

•
•  

Figure 6.—High temperature thin film strain gage technology for crack detection demonstrated under high 
   cyclic loads.

Gages survived to a speed of 42500 rpm,
under ±2000 microstrain up to 1000 °C 
for a million cycles

Used on superalloys, ceramics, and composites
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Figure 8.—NOx emissions characteristics, ICAO regulations, proposals, and NASA's AST goals.
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Figure 9.—Low Emissions Index demonstrated by HSR Program.
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Predicted Dominant Fan Tone
3rd Blade Passage Frequency

• Numerical predictions indicate that interaction
tones can be reduced to broadband noise levels
of a fan

• Optimal sweep/lean designs predicted to meet
3 EPNdB fan noise reduction Ll Milestone (1Q97)

• 22 inch model fan hardware tested in 9 x 15 Wind
Tunnel, results verify predictions

Rotor
Stator

Rotor
Stator

Static Pressure
Contours

Increasing

Lean Angle

Figure 10.—Noise reduction milestone achieved in AST Program.

Figure 12.—GAP Trend Setting Revolutionary Engines.

Figure 11.—Noise Reduction Milestone Achieved in HSR Program.
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Figure 13.—Smart control system technologies being
   tested on the Pratt & Whitney engine.

Figure 14.—Engine nacelle with Micro-Blowing
   Technique skin showed over 50% reduction in
   skin friction.

• THE HITEMP PMC SURGE DUCT
HAS SIX TIMES THE DURABILITY
OF THE TITANIUM SURGE DUCT.

• SURVIVED 10,000 OPERATING
CYCLES WHILE THE PMC SURGE
DUCT SURVIVED OVER 60,000
OPERATING CYCLES.

HITEMP PMC SURGE
DUCT

  Surge Duct Production Weight
Configuration Cost

Titanium $2219 2.44
Production

GR/AMB-21 $1729 1.28
Optimized

Figure 15.—Lightweight, low cost, high durability composite surge duct 
   developed under the NASA HITEMP Program.

Figure 16.—The axisymmetric simulation of a full engine, showing 
   pressure-gradient interactions, will be compared to actual engine data
   to verify accuracy.
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Figure 18.—Pulsed laser sheet shows instantaneous 
   measurement of velocity field in the diffuser of a 
   high-speed centrifugal compressor.

Figure 17.—Simulation of fan flutter using TURBO-AE code.

TURBO-AE models flutter by combining:
· 3D Navier-Stokes (viscous) Steady & Unsteady Aerodynamics
· 3D Finite-Element based Structural Dynamics

Structural
DynamicsFinite-Element

model

Steady & Unsteady
Aerodynamics

CFD
grid

0% cycle

25% cycle

50% cycle

75% cycle

TURBO-AE

TURBO-AE
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Effectiveness of Advanced Technology in Reducing Total CO2 Emitted From Aircraft

Figure 20.—Aviation and the Kyoto Protocol.

Global Warming Reversal

Improved Local Air Quality

Ozone Depletion Recovery

Figure 19.—ECOA emission impact metric definitions.

Related
Pillar CO2 NOx
Goal

-67%/10 yrs -25%/10 yrs -67%/10 yrs
-80%/25 yrs -50%/25 yrs -80%/25 yrs

-100%/30-40 yrs -100%/30-40 yrs

-67%/10 yrs -67%/10 yrs
-80%/25 yrs -80%25 yrs

-100%/30-40 yrs

-67%/10 yrs -67%/10 yrs
-80%/25 yrs -80%/25 yrs

-100%30-40 yrs

Figure 21.—Fuel cell zero emissions propulsion system concept.

Polymer Electrolyte
Fuel Cell/PEM*
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Combustion

Materials and Structures

Turbomachinery

Primary EmphasisInvestment Area Metrics

• Ultra Low NOx
Combustor

• Particulate and Aerosol
Characterization

• CMC Liner at 10%
cooling

• Low tip speed fans
• Highly Loaded

Compressors
• Highly Loaded/Coupled

HP/LP Turbines

• Uncooled CMC Materials
• Adv Materials to Enable

3100oF Turbine Rotor Inlet
Temperature w/15% Cooling

• Light Weight Nozzle
Structure

• Environmentally Friendly
PMC with 600oF Capability

70% NOx
Reduction from
1996 ICAO
Baseline

At Least 8%
CO2 Reduction
from Today’s
Technology
(Higher for
Large Subsonic
Transport)

• 70% Reduction of
LTO NOx at 55:1
and 30:1 PR from
1996 ICAO

• Ultra Low NOx
Cruise < 5EI

• 2400oF CMC
• 600oF RTM PMC
• 150oF Gain in TBC T

Gradient for Airfoil
• 9000 hrs at 1250oF or

1000 hrs at 1400oF
for disk alloy

Propulsion/Airframe and System Integration

Enabling

Enabling

• Fans - 3.5 PR at 1500
ft/sec

• Compressor for 16:1
PR in 4 stages (∆H/U2

= 1.2)
• 3100oF Turbine Rotor

Inlet T at 15%
Cooling

Figure 22.—Proposed UEET Program investment areas and metrics.

Figure 23.–Escalation in noise stringency.
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• Meet international regulations (increased stringency) and local rules
• Maintain and improve competitiveness of air transportation

Growing Noise Constraints on Air Travel

Noise Mandate
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Figure 24.–Aircraft noise reduction and community impact.

Figure 26.—VTOL aircraft concepts. 

Figure 25.—Small Air Transportation System concept.

• Satellite-based Comm/Nav/Surveillance

• Cyber-tutors
• 75% savings in

time and cost

• Datalink-managed
applications software
updates

• Display-less cockpits
(Out-the window fused
data)

• Spread spectrum data
radios for Gbps
bandwidth

• <$15 per lb. composites,
assembled

• Robotics for manufacturing
• Automotive synergies

• Non Hydro-Carb. propul.
• <$10,000 engines
• Quiet propulsion
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Systems & Operations
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